حجم - ریاضی سوم راهنمایی


عضو شوید


نام کاربری
رمز عبور

:: فراموشی رمز عبور؟

عضویت سریع

نام کاربری
رمز عبور
تکرار رمز
ایمیل
کد تصویری
براي اطلاع از آپيدت شدن وبلاگ در خبرنامه وبلاگ عضو شويد تا جديدترين مطالب به ايميل شما ارسال شود



تاریخ : پنج شنبه 4 خرداد 1391
بازدید : 705
نویسنده : 000000000000
حجم:(Volume) حجم در لغت به معنی برآمدگی و ستبری و جسامت چیزی می باشد و در اصطلاح هندسه گنجایش و ظرفیت جسم و آن مقداری از فضا که جسم آن را اشغال می کند, را نشان می دهد. منشور: (Prism) منشور در لغت به معنی پراکنده, نشر شده, زنده شده و مبعوث است و در اصطلاح هندسه نام شکل است که دو قاعده دارد که دو چند ضلعی مساوی هستند و بدنه منشور(سطح جانبی منشور ) از مستطیلها یا متوازی الاضلاعها تشکیل شده است. معرفی منشور 5 پهلو: ي نام شکل: منشور 5 پهلو ي یال های منشور: 'EE',DD',CC',BB',AA ي وجه منشور: هر کدام از مستطیل های جانبی را یک وجه منشور می نامند. ي ارتفاع منشور: از آنجا که هر کدام از یال ها بر دو قاعده منشور عمود می باشند, لذا ارتفاع منشور با اندازه هر یک از یال ها برابر است. ي قاعده ی منشور: منشور دو قاعده دارد. ABCDE و 'A'B'C'D'E که دو پنج ضلعی مساوی اند. رابطه های مهم: ارتفاع × مساحت قاعده = حجم منشور ارتفاع × محیط قاعده = مساحت جانبی منشور مساحت دو قاعده + مساحت جانبی = مساحت کل منشور استوانه: (Cylinder) نام شکلی است که دو قاعده دارد که دو دایره مساوی هستند و بر جانبی راست استوار است. اگر مستطیل را حول طول آن دوران دهیم, شکل فضایی حاصل استوانه نامیده می شود. در این صورت طول مستطیل ارتفاع استوانه و عرض آن شعاع قاعده استوانه می باشد. در شکل بالا مستطیل ABCD را حول طول آن دوران داده ایم و استوانه بوجود آمده است. رابطه های مهم: ارتفاع×مساحت قاعده(دایره) = حجم استوانه ارتفاع×محیط قاعده(دایره) = مساحت جانبی استوانه مساحت دو قاعده + مساحت جانبی = مساحت کل استوانه هرم: (pyramid) هرم در لغت به معنی سخت پیر گردیدن و کلان سال شدن است و در اصطلاح هندسه حجمی است که قاعده آن یک چند ضلعی و وجوه جانبی اش مثلثهایی باشند که همه به یک رأس مشترک(رأس هرم) منتهی می شوند. معرفی هرم منتظم: ي نام شکل: هرم منتظم. ي رأس هرم: نقطه S ي ارتفاع هرم: پاره خطی است که از رأس هرم به مرکز قاعده ی هرم عمود است(SO) ي قاعده هرم: پنج ضلعی منتظم ABCDE ي سهم هرم: ارتفاع مثلث های جانبی, ارتفاع هر وجه جانبی هرم منتظم(SH). ي وجه هرم: هر یک از مثلث هایی که بدنه هرم را می پوشانند را یک وجه جانبی می نامیم. ي یال هرم: محل تقاطع هر دو وجه جانبی را یال هرم می نامیم. SE,SD,SC,SB,SA رابطه های مهم: مخروط : (cone) مخروط به معنی خراشیده شده ، تراشیده شده و خراطی شده است ودر اصطلاح هندسه حجمی است که از دوران مثلث قائم الزاویه حول یک ضلع آن به دست می آید . کله قند و کلاه بوقی نمونه هایی به شکل مخروط هستند. معرفی مخروط : ي نام شکل : مخروط ي رأس :نقطه ی s ي ارتفاع :پاره خط SO ضلعی که مثلث قائم الزاویه را حول آن دوران داده ایم تا مخروط بوجود آید. پاره خطی است که از رأس مخروط بر صفحه ی قاعده ی آن عمود است . ي قاعده ی مخروط : دایره c به مرکز O و شعاع oB را قاعده ی مخروط می نامیم. ي مولد مخروط :پاره خط SA یا SB ، وتر مثلث قائم الزاویه که مخروط را بوجود آورده است. رابطه های مهم : کره : (sphere) کره به معنی گوی و آن چه که به شکل گوی باشد، است و در اصطلاح هندسه شکلی است که از دوران نیم دایره حول قطرش بوجود می آید . مانند توپ ، گوی چوگان معرفی کره: ي مرکز کره :نقطه ی O ي شعاع کره :R (فاصله ی نقاط روی سطح کره از مرکز کره) ي دایره ی عظیمه :اگر یک کره را نصف کنیم، دایره ای که از نصف کردن کره بدست می آید، دایره عظیمه نام دارد . رابطه های مهم : 1- اگر مثلث قائم الزاویه ای را حول وترش دوران دهیم ، دو مخروط پدید می آید که قاعده های آن ها بر هم منطبق اند. مثال: مثلث قائم الزاویه ای به اضلاع 6 ، 8 ، 10 ، را حول وتر این مثلث دوران می دهیم . حجم جسم حاصل را حساب کنید . حل: 2- با توجه به دستور محاسبه ی مساحت کره (r۲ ת 4) مشخص می شود که اگر شعاع کره ای را a برابر کنیم مساحت آن a۲ برابر می شود. مثال: اگر شعاع کره ای را 5 برابر کنیم ، مساحت آن چه تغییری می کند؟ حل: 3- با توجه به دستور محاسبه ی حجم کره مشخص می شود که اگر شعاع کره ای را a برابر کنیم، حجم آن a۲ برابر می شود. مثال: اگر شعاع کره ای را 3 برابر کنیم ، حجم آن چه تغییری می کند؟ حل: یعنی حجم کره ی جدید 27 برابر جحم کره ی قدیمی می باشد. 4- اگر مکعبی را در یک کره محاط کنیم ، قطر مکعب با قطر کره مساوی است . 5- از دوران یک ذوزنقه ی قائم الزاویه حول ساق قائم ، مخروط ناقصی پدید می آید که حجم آن ازدستور زیر قابل محاسبه است: ‏ تست1 : مثلث ABC راحول وتر BC دوران می دهیم. حجم شکل حاصل برابر است با : (3=ת) د)2 ج)2 ب)2 الف) ‏ تست2 : اگر شعاع قاعده ی یک مخروط را دو برابر و ارتفاع آن را 3 برابر کنیم ، حجم مخروط چند برابر خواهد شد؟ د) 8 برابر ج)12 برابر ب) 6 برابر الف) 4 برابر ‏ تست3 : اگر شعاع قاعده ی استوانه ای را 3 برابر و ارتفاع آن را ثلث کنیم ، حجم استوانه حاصل ....... د) 9 برابر می شود ج)تغییر نمی کند ب)3 برابر می شود الف) ثلث می شود ‏ تست4 : در کره ای به شعاع یک مکعب محاط شده است . نسبت حجم این کره به مکعب چند است؟ د) ج)2 ب)2 الف) ‏ تست5 : گسترده ی سطح جانبی یک مخروط دوار نیم دایره است. زاویه ی مولد این مخروط با ارتفاع آن چند درجه است؟ د) ˚15 ج) ˚60 ب) ˚45 الف) ˚30


مطالب مرتبط با این پست :

می توانید دیدگاه خود را بنویسید


نام
آدرس ایمیل
وب سایت/بلاگ
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

آپلود عکس دلخواه:








تمام اطلاعات خود را از ما بگیرید!!!!!

نام :
وب :
پیام :
2+2=:
(Refresh)

تبادل لینک هوشمند
برای تبادل لینک  ابتدا ما را با عنوان ریاضی و آدرس mathematical159147.LXB.i r لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.






آمار وب سایت:  

بازدید امروز : 156
بازدید دیروز : 54
بازدید هفته : 1097
بازدید ماه : 3118
بازدید کل : 52035
تعداد مطالب : 183
تعداد نظرات : 43
تعداد آنلاین : 1



RSS

Powered By
loxblog.Com